The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  0  X  X X^2  1  1  X  X 2X^2  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  0 X^2  X  X
 0  X 2X X^2 2X^2+X X^2+2X 2X^2 X^2+X 2X^2+2X  0 2X^2+X 2X X^2 X^2+X X^2+2X 2X^2  X 2X^2+2X  0 2X^2+X 2X X^2 X^2+X X^2+2X 2X^2  X 2X^2+2X  0 2X^2+X 2X X^2 X^2+X X^2+2X 2X^2  X 2X^2+2X 2X^2+X 2X  X X^2+X X^2+2X  X  0 X^2  X 2X^2+2X  X 2X^2 2X^2+X X^2+X  X 2X X^2+2X 2X^2+2X  0 X^2 2X^2 2X^2+X X^2+X  X 2X X^2+2X 2X^2+2X  0 X^2 2X^2 2X^2+X X^2+X 2X X^2+2X  X  X  X 2X^2+2X

generates a code of length 74 over Z3[X]/(X^3) who�s minimum homogenous weight is 147.

Homogenous weight enumerator: w(x)=1x^0+36x^147+162x^148+30x^150+6x^153+6x^159+2x^162

The gray image is a linear code over GF(3) with n=666, k=5 and d=441.
This code was found by Heurico 1.16 in 0.143 seconds.